Abschnitt Name Beschreibung
Link/URL Videoconference Room
Chapter 1 Datei 1.1. What is Computational Linguistics?
Datei 1.2. History of Computational Linguistics
Datei 1.3. Core Techniques
Datei 1.4. Areas of Computational Linguistics
Datei 1.5. Interdisciplinary Connections
Textseite Explore NLTK packages

import nltk
nltk.download()

Link/URL Let's talk about computational linguistics! My experience in building Siri voices
Link/URL The language of computational linguistics. | Walter Daelemans | TEDxAntwerp
Link/URL Neural network in 5 mins
Chapter 2 Datei 2.1. Word Meaning in Linguistics
Datei 2.2. Types of Ambiguity
Datei 2.3. Context and Word Meaning
Datei 2.4. Wordnet Introduction
Datei 2.5. Word Sense Disambiguation
Link/URL Wordnet Project Homepage
Link/URL Chapter 2 Lecture notes
Link/URL Word Sense Disambiguation video lecture
Link/URL Explore Word Embedding Universe


Chapter 3 Datei 3.1. Open versus Closed POS
Datei 3.2. Markov Models
Datei 3.3. POS Tagging with Python Libraries
Link/URL Penn Treebank Sample
Link/URL Chapter 3 Lecture notes
Link/URL Markov Chains
Link/URL Markov Chains: Generating Sherlock Holmes Stories
Link/URL Hidden Markov Model
Link/URL Forward Algorithm
Link/URL Viterbi Algorithm
Link/URL Find difference with Code Beautify
Chapter 4 Datei 4.1. Decomposing Texts with Bag of Words Model
Datei 4.2. Bayesian Text Classification: The Naive Approach
Datei 4.3. Support Vector Machines (SVM)
Datei 4.4. Decision Trees
Datei 4.5. Neural Networks
Link/URL Text Classification lecture notes
Link/URL Naive Bayes, Clearly Explained!!!
Link/URL The Kernel Trick in Support Vector Machine (SVM)
Link/URL Decision and Classification Trees, Clearly Explained!!!
Link/URL Recurrent Neural Networks (RNNs), Clearly Explained!!!
Chapter 5 Datei 5.1. Constituency Relations
Datei 5.2. Dependency Relations
Datei 5.3. Treebanks
Link/URL Universal Dependencies Project

Step 1: Find 

Query UD treebanks online:


Step 2: Try

https://lindat.mff.cuni.cz/services/pmltq/#!/treebank/bnc/query/IYWgdg9gJgpgBAbTsAZgVzHAvHA5AOQCVc4BdIA/result/svg?filter=true&timeout=30&limit=100

To explore Vietnamese Universal Dependency Relations, start from here:

https://lindat.mff.cuni.cz/services/pmltq/#!/treebank/udvi_vtb214/help


Overview of Parsing Frameworks

  1. Analytical Tree (a-tree)
  2. Tectogrammatical Tree (t-tree)

1. Analytical Tree (a-tree):

  • Definition: Analytical trees represent the surface syntactic structure of a sentence. They show how words are grouped into phrases and how these phrases are related to each other.
  • Components:
    • Pred (Predicate): The main verb of the sentence.
    • Sb (Subject): The subject of the sentence.
    • Obj (Object): The object of the sentence.
    • AuxP (Auxiliary Preposition): Prepositions that introduce prepositional phrases.
    • Atr (Attribute): Modifiers or attributes of nouns.
    • Adv (Adverbial): Modifiers or complements of verbs.
    • AuxC (Auxiliary Conjunction): Conjunctions that link clauses.
    • AuxX: Punctuation markers like commas and periods.

The a-tree in the screenshot breaks down the sentence into its syntactic components, showing hierarchical relationships between words and phrases.

2. Tectogrammatical Tree (t-tree):

  • Definition: Tectogrammatical trees represent the underlying, deep syntactic structure of a sentence. They abstract away from the surface form to show more semantic and functional relationships.
  • Components:
    • PRED (Predicate): The main verb of the sentence.
    • ACT (Actor): The logical subject or agent of the action.
    • PAT (Patient): The logical object or recipient of the action.
    • RSTR (Restrictive Attribute): Attributes that provide necessary information about a noun.
    • MEANS: Instrumental adjuncts indicating the means by which an action is performed.
    • ENUNC (Enunciation): Linking functions that relate to how the sentence is embedded in discourse.
    • MANN (Manner): Adverbials expressing the manner of the action.
    • APP (Apposition): Noun phrases that are in apposition to another noun phrase.

The t-tree in the screenshot abstracts away from surface syntactic categories to focus on semantic roles and deeper syntactic relationships.

Comparison:

  • Analytical Tree:

    • Focuses on surface syntax.
    • Reflects the actual word order and grammatical relationships.
    • Useful for syntactic parsing and understanding sentence structure.
  • Tectogrammatical Tree:

    • Focuses on deep syntax and semantics.
    • Abstracts from surface form to show underlying relationships.
    • Useful for semantic parsing and understanding the roles of different sentence elements.


Datei Xây dựng treebank tiếng Việt
Link/URL Syntax & Grammar Lecture Notes
Link/URL Constituency Parsing
Link/URL Dependency parsing
Chapter 6 Datei 6.1. Sources of Text
Datei 6.2. Sampling Strategies
Datei 6.3. Data Acquisition Techniques
Datei 6.4. Considerations for Representative and Diverse Corpora
Datei 6.5. Corpus Annotation
Datei 6.6. Applications of Annotated Corpora
Datei 6.7. Best Practices in Building Linguistics Corpora
Link/URL Corpus Linguistics Lecture Notes
Chapter 7 Datei 7.1. Introduction
Datei 7.2. Core Objectives
Datei 7.3. Lexical Databases
Datei 7.4. Expanding Lexical Resources
Datei 7.5. Automatic Extraction of Lexical Information
Datei 7.6. Challenges in Computational Lexicography
Datei 7.7. Applications of Computational Lexicography
Link/URL Computational Lexicography Lecture Notes
Chapter 8 Datei Introduction
Datei 8.1. Language Teaching
Datei 8.2. Search Engines and Information Retrieval
Datei 8.3. Machine Translation
Datei 8.4. Sentiment Analysis
Datei 8.5. Speech Recognition Systems
Chapter 9 Datei Introduction
Datei 9.1. Applications in Healthcare
Datei 9.2. Applications in Education
Datei 9.3. Applications in Entertainment and Media
Datei 9.4. Ethical and Responsible Language Technology
Resource Center Link/URL Meet Alpha, your class tutor
Verzeichnis Tools for Research
Textseite Past Recordings

Danh gia LATS Nguyen The Luong https://cloud05.ulearning.vn/playback/presentation/2.3/d4501acd3cda5ff4c87b07008a8de6f7c7cfc6c0-1637738196339

Webinar cua Nguyen Thi Hong Lien cho HVCT: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642591431195

Vu tap huan cho LAC 7/4/2024: https://cloud05.ulearning.vn/playback/presentation/2.3/aaf9d545548cd1a20da0be92751cdbb8a51af2cd-1720053245124

Lien tap huan cho HVCT 17/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642418216035

Vu tap huan cho HVCT 21/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1641986136908

Vu tap huan cho HVCT 14/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642159249548

Vu tap huan cho HVCT 21/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642764009388

Vu tap huan ki nang to chuc hoc va thi truc tuyen: https://cloud05.ulearning.vn/playback/presentation/2.3/2164641e1e2f28b0de3fc7f470774025a7ff3271-1678417085438

eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642159249548

Link/URL End of course feedback
Textseite History of Neural Networks
Textseite 300 possible dimensions in Word Embeddings
Link/URL TARI AI Tools Survey

Please use TARI AI tools at https://tari.huflit.edu.vn before taking this survey.

Link/URL Course WhiteBoard
Link/URL All databases used in the book