セクション 名称 説明
URL Videoconference Room
Chapter 1 ファイル 1.1. What is Computational Linguistics?
ファイル 1.2. History of Computational Linguistics
ファイル 1.3. Core Techniques
ファイル 1.4. Areas of Computational Linguistics
ファイル 1.5. Interdisciplinary Connections
ページ Explore NLTK packages

import nltk
nltk.download()

URL Let's talk about computational linguistics! My experience in building Siri voices
URL The language of computational linguistics. | Walter Daelemans | TEDxAntwerp
URL Neural network in 5 mins
Chapter 2 ファイル 2.1. Word Meaning in Linguistics
ファイル 2.2. Types of Ambiguity
ファイル 2.3. Context and Word Meaning
ファイル 2.4. Wordnet Introduction
ファイル 2.5. Word Sense Disambiguation
URL Wordnet Project Homepage
URL Chapter 2 Lecture notes
URL Word Sense Disambiguation video lecture
URL Explore Word Embedding Universe


Chapter 3 ファイル 3.1. Open versus Closed POS
ファイル 3.2. Markov Models
ファイル 3.3. POS Tagging with Python Libraries
URL Penn Treebank Sample
URL Chapter 3 Lecture notes
URL Markov Chains
URL Markov Chains: Generating Sherlock Holmes Stories
URL Hidden Markov Model
URL Forward Algorithm
URL Viterbi Algorithm
URL Find difference with Code Beautify
Chapter 4 ファイル 4.1. Decomposing Texts with Bag of Words Model
ファイル 4.2. Bayesian Text Classification: The Naive Approach
ファイル 4.3. Support Vector Machines (SVM)
ファイル 4.4. Decision Trees
ファイル 4.5. Neural Networks
URL Text Classification lecture notes
URL Naive Bayes, Clearly Explained!!!
URL The Kernel Trick in Support Vector Machine (SVM)
URL Decision and Classification Trees, Clearly Explained!!!
URL Recurrent Neural Networks (RNNs), Clearly Explained!!!
Chapter 5 ファイル 5.1. Constituency Relations
ファイル 5.2. Dependency Relations
ファイル 5.3. Treebanks
URL Universal Dependencies Project

Step 1: Find 

Query UD treebanks online:


Step 2: Try

https://lindat.mff.cuni.cz/services/pmltq/#!/treebank/bnc/query/IYWgdg9gJgpgBAbTsAZgVzHAvHA5AOQCVc4BdIA/result/svg?filter=true&timeout=30&limit=100

To explore Vietnamese Universal Dependency Relations, start from here:

https://lindat.mff.cuni.cz/services/pmltq/#!/treebank/udvi_vtb214/help


Overview of Parsing Frameworks

  1. Analytical Tree (a-tree)
  2. Tectogrammatical Tree (t-tree)

1. Analytical Tree (a-tree):

  • Definition: Analytical trees represent the surface syntactic structure of a sentence. They show how words are grouped into phrases and how these phrases are related to each other.
  • Components:
    • Pred (Predicate): The main verb of the sentence.
    • Sb (Subject): The subject of the sentence.
    • Obj (Object): The object of the sentence.
    • AuxP (Auxiliary Preposition): Prepositions that introduce prepositional phrases.
    • Atr (Attribute): Modifiers or attributes of nouns.
    • Adv (Adverbial): Modifiers or complements of verbs.
    • AuxC (Auxiliary Conjunction): Conjunctions that link clauses.
    • AuxX: Punctuation markers like commas and periods.

The a-tree in the screenshot breaks down the sentence into its syntactic components, showing hierarchical relationships between words and phrases.

2. Tectogrammatical Tree (t-tree):

  • Definition: Tectogrammatical trees represent the underlying, deep syntactic structure of a sentence. They abstract away from the surface form to show more semantic and functional relationships.
  • Components:
    • PRED (Predicate): The main verb of the sentence.
    • ACT (Actor): The logical subject or agent of the action.
    • PAT (Patient): The logical object or recipient of the action.
    • RSTR (Restrictive Attribute): Attributes that provide necessary information about a noun.
    • MEANS: Instrumental adjuncts indicating the means by which an action is performed.
    • ENUNC (Enunciation): Linking functions that relate to how the sentence is embedded in discourse.
    • MANN (Manner): Adverbials expressing the manner of the action.
    • APP (Apposition): Noun phrases that are in apposition to another noun phrase.

The t-tree in the screenshot abstracts away from surface syntactic categories to focus on semantic roles and deeper syntactic relationships.

Comparison:

  • Analytical Tree:

    • Focuses on surface syntax.
    • Reflects the actual word order and grammatical relationships.
    • Useful for syntactic parsing and understanding sentence structure.
  • Tectogrammatical Tree:

    • Focuses on deep syntax and semantics.
    • Abstracts from surface form to show underlying relationships.
    • Useful for semantic parsing and understanding the roles of different sentence elements.


ファイル Xây dựng treebank tiếng Việt
URL Syntax & Grammar Lecture Notes
URL Constituency Parsing
URL Dependency parsing
Chapter 6 ファイル 6.1. Sources of Text
ファイル 6.2. Sampling Strategies
ファイル 6.3. Data Acquisition Techniques
ファイル 6.4. Considerations for Representative and Diverse Corpora
ファイル 6.5. Corpus Annotation
ファイル 6.6. Applications of Annotated Corpora
ファイル 6.7. Best Practices in Building Linguistics Corpora
URL Corpus Linguistics Lecture Notes
Chapter 7 ファイル 7.1. Introduction
ファイル 7.2. Core Objectives
ファイル 7.3. Lexical Databases
ファイル 7.4. Expanding Lexical Resources
ファイル 7.5. Automatic Extraction of Lexical Information
ファイル 7.6. Challenges in Computational Lexicography
ファイル 7.7. Applications of Computational Lexicography
URL Computational Lexicography Lecture Notes
Chapter 8 ファイル Introduction
ファイル 8.1. Language Teaching
ファイル 8.2. Search Engines and Information Retrieval
ファイル 8.3. Machine Translation
ファイル 8.4. Sentiment Analysis
ファイル 8.5. Speech Recognition Systems
Chapter 9 ファイル Introduction
ファイル 9.1. Applications in Healthcare
ファイル 9.2. Applications in Education
ファイル 9.3. Applications in Entertainment and Media
ファイル 9.4. Ethical and Responsible Language Technology
Resource Center URL Meet Alpha, your class tutor
フォルダ Tools for Research
ページ Past Recordings

Danh gia LATS Nguyen The Luong https://cloud05.ulearning.vn/playback/presentation/2.3/d4501acd3cda5ff4c87b07008a8de6f7c7cfc6c0-1637738196339

Webinar cua Nguyen Thi Hong Lien cho HVCT: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642591431195

Vu tap huan cho LAC 7/4/2024: https://cloud05.ulearning.vn/playback/presentation/2.3/aaf9d545548cd1a20da0be92751cdbb8a51af2cd-1720053245124

Lien tap huan cho HVCT 17/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642418216035

Vu tap huan cho HVCT 21/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1641986136908

Vu tap huan cho HVCT 14/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642159249548

Vu tap huan cho HVCT 21/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642764009388

Vu tap huan ki nang to chuc hoc va thi truc tuyen: https://cloud05.ulearning.vn/playback/presentation/2.3/2164641e1e2f28b0de3fc7f470774025a7ff3271-1678417085438

eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642159249548

URL End of course feedback
ページ History of Neural Networks
ページ 300 possible dimensions in Word Embeddings
URL TARI AI Tools Survey

Please use TARI AI tools at https://tari.huflit.edu.vn before taking this survey.

URL Course WhiteBoard
URL All databases used in the book