名称 描述
网页地址 Videoconference Room
Chapter 1 文件 1.1. What is Computational Linguistics?
文件 1.2. History of Computational Linguistics
文件 1.3. Core Techniques
文件 1.4. Areas of Computational Linguistics
文件 1.5. Interdisciplinary Connections
网页 Explore NLTK packages

import nltk
nltk.download()

网页地址 Let's talk about computational linguistics! My experience in building Siri voices
网页地址 The language of computational linguistics. | Walter Daelemans | TEDxAntwerp
网页地址 Neural network in 5 mins
Chapter 2 文件 2.1. Word Meaning in Linguistics
文件 2.2. Types of Ambiguity
文件 2.3. Context and Word Meaning
文件 2.4. Wordnet Introduction
文件 2.5. Word Sense Disambiguation
网页地址 Wordnet Project Homepage
网页地址 Chapter 2 Lecture notes
网页地址 Word Sense Disambiguation video lecture
网页地址 Explore Word Embedding Universe


Chapter 3 文件 3.1. Open versus Closed POS
文件 3.2. Markov Models
文件 3.3. POS Tagging with Python Libraries
网页地址 Penn Treebank Sample
网页地址 Chapter 3 Lecture notes
网页地址 Markov Chains
网页地址 Markov Chains: Generating Sherlock Holmes Stories
网页地址 Hidden Markov Model
网页地址 Forward Algorithm
网页地址 Viterbi Algorithm
网页地址 Find difference with Code Beautify
Chapter 4 文件 4.1. Decomposing Texts with Bag of Words Model
文件 4.2. Bayesian Text Classification: The Naive Approach
文件 4.3. Support Vector Machines (SVM)
文件 4.4. Decision Trees
文件 4.5. Neural Networks
网页地址 Text Classification lecture notes
网页地址 Naive Bayes, Clearly Explained!!!
网页地址 The Kernel Trick in Support Vector Machine (SVM)
网页地址 Decision and Classification Trees, Clearly Explained!!!
网页地址 Recurrent Neural Networks (RNNs), Clearly Explained!!!
Chapter 5 文件 5.1. Constituency Relations
文件 5.2. Dependency Relations
文件 5.3. Treebanks
网页地址 Universal Dependencies Project

Step 1: Find 

Query UD treebanks online:


Step 2: Try

https://lindat.mff.cuni.cz/services/pmltq/#!/treebank/bnc/query/IYWgdg9gJgpgBAbTsAZgVzHAvHA5AOQCVc4BdIA/result/svg?filter=true&timeout=30&limit=100

To explore Vietnamese Universal Dependency Relations, start from here:

https://lindat.mff.cuni.cz/services/pmltq/#!/treebank/udvi_vtb214/help


Overview of Parsing Frameworks

  1. Analytical Tree (a-tree)
  2. Tectogrammatical Tree (t-tree)

1. Analytical Tree (a-tree):

  • Definition: Analytical trees represent the surface syntactic structure of a sentence. They show how words are grouped into phrases and how these phrases are related to each other.
  • Components:
    • Pred (Predicate): The main verb of the sentence.
    • Sb (Subject): The subject of the sentence.
    • Obj (Object): The object of the sentence.
    • AuxP (Auxiliary Preposition): Prepositions that introduce prepositional phrases.
    • Atr (Attribute): Modifiers or attributes of nouns.
    • Adv (Adverbial): Modifiers or complements of verbs.
    • AuxC (Auxiliary Conjunction): Conjunctions that link clauses.
    • AuxX: Punctuation markers like commas and periods.

The a-tree in the screenshot breaks down the sentence into its syntactic components, showing hierarchical relationships between words and phrases.

2. Tectogrammatical Tree (t-tree):

  • Definition: Tectogrammatical trees represent the underlying, deep syntactic structure of a sentence. They abstract away from the surface form to show more semantic and functional relationships.
  • Components:
    • PRED (Predicate): The main verb of the sentence.
    • ACT (Actor): The logical subject or agent of the action.
    • PAT (Patient): The logical object or recipient of the action.
    • RSTR (Restrictive Attribute): Attributes that provide necessary information about a noun.
    • MEANS: Instrumental adjuncts indicating the means by which an action is performed.
    • ENUNC (Enunciation): Linking functions that relate to how the sentence is embedded in discourse.
    • MANN (Manner): Adverbials expressing the manner of the action.
    • APP (Apposition): Noun phrases that are in apposition to another noun phrase.

The t-tree in the screenshot abstracts away from surface syntactic categories to focus on semantic roles and deeper syntactic relationships.

Comparison:

  • Analytical Tree:

    • Focuses on surface syntax.
    • Reflects the actual word order and grammatical relationships.
    • Useful for syntactic parsing and understanding sentence structure.
  • Tectogrammatical Tree:

    • Focuses on deep syntax and semantics.
    • Abstracts from surface form to show underlying relationships.
    • Useful for semantic parsing and understanding the roles of different sentence elements.


文件 Xây dựng treebank tiếng Việt
网页地址 Syntax & Grammar Lecture Notes
网页地址 Constituency Parsing
网页地址 Dependency parsing
Chapter 6 文件 6.1. Sources of Text
文件 6.2. Sampling Strategies
文件 6.3. Data Acquisition Techniques
文件 6.4. Considerations for Representative and Diverse Corpora
文件 6.5. Corpus Annotation
文件 6.6. Applications of Annotated Corpora
文件 6.7. Best Practices in Building Linguistics Corpora
网页地址 Corpus Linguistics Lecture Notes
Chapter 7 文件 7.1. Introduction
文件 7.2. Core Objectives
文件 7.3. Lexical Databases
文件 7.4. Expanding Lexical Resources
文件 7.5. Automatic Extraction of Lexical Information
文件 7.6. Challenges in Computational Lexicography
文件 7.7. Applications of Computational Lexicography
网页地址 Computational Lexicography Lecture Notes
Chapter 8 文件 Introduction
文件 8.1. Language Teaching
文件 8.2. Search Engines and Information Retrieval
文件 8.3. Machine Translation
文件 8.4. Sentiment Analysis
文件 8.5. Speech Recognition Systems
Chapter 9 文件 Introduction
文件 9.1. Applications in Healthcare
文件 9.2. Applications in Education
文件 9.3. Applications in Entertainment and Media
文件 9.4. Ethical and Responsible Language Technology
Resource Center 网页地址 Meet Alpha, your class tutor
文件夹 Tools for Research
网页 Past Recordings

Danh gia LATS Nguyen The Luong https://cloud05.ulearning.vn/playback/presentation/2.3/d4501acd3cda5ff4c87b07008a8de6f7c7cfc6c0-1637738196339

Webinar cua Nguyen Thi Hong Lien cho HVCT: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642591431195

Vu tap huan cho LAC 7/4/2024: https://cloud05.ulearning.vn/playback/presentation/2.3/aaf9d545548cd1a20da0be92751cdbb8a51af2cd-1720053245124

Lien tap huan cho HVCT 17/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642418216035

Vu tap huan cho HVCT 21/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1641986136908

Vu tap huan cho HVCT 14/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642159249548

Vu tap huan cho HVCT 21/1/2022: https://cloud05.ulearning.vn/playback/presentation/2.3/eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642764009388

Vu tap huan ki nang to chuc hoc va thi truc tuyen: https://cloud05.ulearning.vn/playback/presentation/2.3/2164641e1e2f28b0de3fc7f470774025a7ff3271-1678417085438

eb677b81657eec7b58f1a7ba07e3b5f53bb02689-1642159249548

网页地址 End of course feedback
网页 History of Neural Networks
网页 300 possible dimensions in Word Embeddings
网页地址 TARI AI Tools Survey

Please use TARI AI tools at https://tari.huflit.edu.vn before taking this survey.

网页地址 Course WhiteBoard
网页地址 All databases used in the book